细胞焦亡在头颈鳞癌中的作用的研究进展
作者单位:

1.贵州医科大学;2.贵州省人民医院

基金项目:

贵州省人民医院院级课题青年基金GZSYQN[2022]04


Research progress on the role of pyroptosis in head and neck squamous cell carcinoma
Affiliation:

Guizhou Medical University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • |
    摘要:

    头颈部鳞状细胞癌(HNSCC)是全球第六大常见癌症,五年生存率仍低于50%。近年来,细胞焦亡作为一种新发现的细胞程序性死亡方式引起了广泛关注。这一过程由炎性半胱氨酸天冬酶(Caspase)激活,并通过依赖gasdermin蛋白家族来形成质膜孔。研究表明,细胞焦亡在肿瘤进展和治疗抵抗中起着重要作用。活化的炎性小体,作为核苷酸结合寡聚化结构域样受体(NLR)的一个成员,能激活Caspase-1,从而诱导炎症效应和细胞焦亡,进一步影响肿瘤疾病的进展。然而,关于细胞焦亡和HNSCC之间关系的研究仍然有限。本文综述了现有的研究成果,并强调了更多针对细胞焦亡在HNSCC中作用的研究的重要性。

    Abstract:

    Head and Neck Squamous Cell Carcinoma (HNSCC) ranks as the sixth most common cancer globally, with a five-year survival rate still less than 50%. Recently, pyroptosis, a newly identified form of programmed cell death, has gained significant attention. This process is activated by inflammatory Caspases and relies on the gasdermin protein family to form pores in the cell membrane. Studies indicate that pyroptosis plays a vital role in both tumor progression and therapy resistance. Activated inflammasomes, as members of the Nucleotide-binding Oligomerization Domain-like Receptor (NLR) family, trigger Caspase-1, thereby inducing inflammatory effects and pyroptosis, further influencing the course of the tumor disease. However, research relating pyroptosis to HNSCC remains limited. This article reviews current findings and underscores the importance of further studies focusing on the role of pyroptosis in HNSCC.

    网友评论
    网友评论
    分享到微博
    发 布
    参考文献
    [1] 谢民强.重视头颈恶性肿瘤的个体化治疗[J].中国耳鼻咽喉颅底外科杂志,2017,23(02):89-94.
    [2] 谢玉林,雷大鹏.人工智能在头颈鳞癌淋巴结转移的病理研究进展[J/OL].山东大学耳鼻喉眼学报:1-9[2023-04-25].http://kns.cnki.net/kcms/detail/37.1437.R.20230410.1854.002.html.
    [3] 高嘉敏,姚艳丽,王玉珏,张志愿,孙树洋.多西他赛对头颈鳞癌细胞焦亡的影响及作用机制探讨[J].中国口腔颌面外科杂志,2023,21(02):105-111.DOI:10.19438/j.cjoms.2023.02.001..
    [4] Zhivaki D, Kagan JC. NLRP3 inflammasomes that induce antitumor immunity.?Trends Immunol. 2021;42(7):575-589. doi:10.1016/j.it.2021.5.001.
    [5] Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages.?Nature. 1992;358(6382):167-169. doi:10.038/358167a0.
    [6] Cookson BT, Brennan MA. Pro-inflammatory programmed cell death.?Trends Microbiol. 2001;9(3):113-114. doi:10.1016/s0966-842x(00)01936-3.
    [7] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.?Cell Death Differ. 2018;25(3):486-541. doi:10.1038/s41418-017-0012-4.
    [8] Schroder K, Tschopp J. The inflammasomes.?Cell. 2010;140(6):821-832. doi:10.1016/j.cell.2010.01.040
    [9] Lee S, Nakahira K, Dalli J, et al. NLRP3 Inflammasome Deficiency Protects against Microbial Sepsis via Increased Lipoxin B4?Synthesis.?Am J Respir Crit Care Med. 2017;196(6):713-726. doi:10.1164/rccm.201604-0892OC.
    [10] Fang Y, Tian S, Pan Y, et al. Pyroptosis: A new frontier in cancer.?Biomed Pharmacother. 2020;121:109595.doi:10.1016/j.biopha.2019.109595.
    [11] 潘旭红,李林俞,陈鑫等.细胞焦亡的分子机制及其在肿瘤中的研究进展[J].中国现代医生,2022,60(29):89-93.
    [12] Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin.?Nature. 2017;547(7661):99-103.doi:10.1038/nature22393.
    [13] Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.?Nature. 2016;535(7610):153-158. doi:10.1038/nature18629.
    [14] Case CL, Kohler LJ, Lima JB, et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.?Proc Natl Acad Sci U S A. 2013;110(5):1851-1856. doi:10.073/pnas.1211521110.
    [15] Yang D, He Y, Mu?oz-Planillo R, Liu Q, Nú?ez G. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock.?Immunity. 2015;43(5):923-932. doi:10.1016/j.immuni.2015.10.009.
    [16] Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.?Nature. 2015;526(7575):666-671.doi:10.1038/nature15541.
    [17] Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family [published correction appears in Nature. 2016 Dec 1;540(7631):150].?Nature. 2016;535(7610):111-116. doi:10.038/nature18590.
    [18] Shen X, Wang H, Weng C, Jiang H, Chen J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity.?Cell Death Dis. 2021;12(2):186. Published 2021 Feb 15.doi:10.1038/s41419-021-03458-5.
    [19] Gram AM, Booty LM, Bryant CE. Chopping GSDMD: caspase-8 has joined the team of pyroptosis-mediating caspases.?EMBO J. 2019;38(10):e102065.doi:10.15252/embj.2019102065.
    [20] Gram AM, Booty LM, Bryant CE. Chopping GSDMD: caspase-8 has joined the team of pyroptosis-mediating caspases.?EMBO J. 2019;38(10):e102065.doi:10.15252/embj.2019102065.
    [21] Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells.?Science. 2020;368(6494):eaaz7548.doi:10.1126/science.aaz7548.
    [22] Guo H, Xie M, Zhou C, Zheng M. The relevance of pyroptosis in the pathogenesis of liver diseases.?Life Sci. 2019;223:69-73. doi:10.1016/j.lfs.2019.02.060。.
    [23] Hu D, Cao Q, Tong M, et al. A novel defined risk signature based on pyroptosis-related genes can predict the prognosis of prostate cancer.?BMC Med Genomics. 2022;15(1):24. Published 2022 Feb 8. doi:10.1186/s12920-022-01172-5.
    [24] Wu J, Zhu Y, Luo M, Li L. Comprehensive Analysis of Pyroptosis-Related Genes and Tumor Microenvironment Infiltration Characterization in Breast Cancer.?Front Immunol. 2021;12:748221.Published 2021 Sep 30. doi:10.3389/fimmu.2021.748221.
    [25] Wang Z, Cao L, Zhou S, Lyu J, Gao Y, Yang R. Construction and Validation of a Novel Pyroptosis-Related Four-lncRNA Prognostic Signature Related to Gastric Cancer and Immune Infiltration.?Front Immunol. 2022;13:854785.Published 2022 Mar 22. doi:10.3389/fimmu.2022.854785.
    [26] Xia X, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-"host"?.?Cell Death Dis. 2019;10(9):650. Published 2019 Sep 9. doi:10.1038/s41419-019-1883-8.
    [27] Raudenská M, Balvan J, Masa?ík M. Cell death in head and neck cancer pathogenesis and treatment.?Cell Death Dis. 2021;12(2):192. Published 2021 Feb 18. doi:10.1038/s41419-021-03474-5.
    [28] 苟浩铖,范丽,李丽,李金泽,冯俊.细胞焦亡相关因子在下咽鳞状细胞癌中的表达及意义[J].中国耳鼻咽喉颅底外科杂志,2021,27(02):183-186.
    [29] Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma [published correction appears in Nat Rev Dis Primers. 2023 Jan 19;9(1):4].?Nat Rev Dis Primers. 2020;6(1):92. Published 2020 Nov 26. doi:10.1038/s41572-020-00224-3.
    [30] Sacco AG, Cohen EE. Current Treatment Options for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma.?J Clin Oncol. 2015;33(29):3305-3313.doi:10.1200/JCO.2015.62.0963.
    [31] Morgan RN, Saleh SE, Farrag HA, Aboshanab KM. New insights on?Pseudomonas aeruginosa?exotoxin A-based immunotoxins in targeted cancer therapeutic delivery.?Ther Deliv. 2023;14(1):31-60. doi:10.4155/tde-2022-0055.
    [32] Fleming BD, Urban DJ, Hall MD, et al. Engineered Anti-GPC3 Immunotoxin, HN3-ABD-T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention.?Hepatology. 2020;71(5):1696-1711. doi:10.1002/hep.30949.
    [33] Rioja-Blanco E, Arroyo-Solera I, álamo P, et al. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma.?J Exp Clin Cancer Res. 2022;41(1):49. Published 2022 Feb 4. doi:10.1186/s13046-022-02267-8.
    [34] Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and Its Derivatives as Cancer Therapies.?Trends Pharmacol Sci. 2019;40(5):327-341. doi:10.1016/j.tips.2019.03.002.
    [35] Cai J, Yi M, Tan Y, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ [published correction appears in J Exp Clin Cancer Res. 2021 Sep 22;40(1):298].?J Exp Clin Cancer Res. 2021;40(1):190. Published 2021 Jun 9. doi:10.1186/s13046-021-01995-7.
    [36] Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1.?Mol Cell Biol. 2007;27(21):7381-7393. doi:10.1128/MCB.00440-07.
    [37] Zhu W, Ye Z, Chen L, Liang H, Cai Q. A pyroptosis-related lncRNA signature predicts prognosis and immune microenvironment in head and neck squamous cell carcinoma.?Int Immunopharmacol. 2021;101(Pt B):108268.doi:10.1016/j.intimp.2021.108268.
    [38] Zhong Z, Hong M, Chen X, et al. Transcriptome analysis reveals the link between lncRNA-mRNA co-expression network and tumor immune microenvironment and overall survival in head and neck squamous cell carcinoma.?BMC Med Genomics. 2020;13(1):57. Published 2020 Mar 30.doi:10.1186/s12920-020-0707-0.
    [39] Wang J, Chen X, Tian Y, et al. Six-gene signature for predicting survival in patients with head and neck squamous cell carcinoma.?Aging (Albany NY). 2020;12(1):767-783. doi:10.18632/aging.102655.
    [40] Zhu W, Zhang J, Wang M, et al. Development of a prognostic pyroptosis-related gene signature for head and neck squamous cell carcinoma patient.?Cancer Cell Int. 2022;22(1):62. Published 2022 Feb 5. doi:10.1186/s12935-022-02476-3.
    [41] Qian X, Tang J, Chu Y, et al. A Novel Pyroptosis-Related Gene Signature for Prognostic Prediction of Head and Neck Squamous Cell Carcinoma.?Int J Gen Med. 2021;14:7669-7679.Published 2021 Nov 4. doi:10.2147/IJGM.S337089.
    相似文献
    引证文献
    您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

引用本文
分享
文章指标
  • 点击次数:370
  • 下载次数: 0
历史
  • 收稿日期:2023-05-24
  • 最后修改日期:2023-08-28
  • 录用日期:2023-08-30
温馨提示

本刊唯一投稿网址:www.xyosbs.com
唯一办公邮箱:xyent@126.com
编辑部联系电话:0731-84327210,84327469
本刊从未委托任何单位、个人及其他网站代理征稿及办理其他业务联系,谨防上当受骗!

关闭